Understanding our graphs

The Bureau of Health Information uses a range of graphs to present key research findings in a simple and visually engaging way.
Below are some of the most common graphs BHI uses. Advice on how to read and interpret each of these can be found on the following pages.
A lozenge graph is used to compare a unit’s results over time.

This example shows the hospitals with a changed or consistent outlier status over the two most recent reporting periods (2009–12 and 2012–15) with regards to mortality for seven different conditions.

The rows show those hospitals with consistent higher or lower than expected mortality results, as well as hospitals that improved or deteriorated between the two time periods.

What is this graph telling me?

There were eight hospitals with higher than expected mortality for the same condition across both time periods (top row). One of these (Tamworth) did so for three conditions.

For 18 hospitals, mortality improved to ‘no different than expected’ for at least one condition; and for Tamworth and Port Macquarie, the improvement was for three and two conditions, respectively.

Source: The Insights Series – Exploring clinical variation in mortality, NSW, July 2012 – June 2015

Hospitals with changed status, 30-day mortality, NSW, 2009–12 and 2012–15

<table>
<thead>
<tr>
<th>09–12</th>
<th>13–15</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMI</td>
<td>John Hunter</td>
</tr>
<tr>
<td></td>
<td>Balmain</td>
</tr>
<tr>
<td>Ischaemic stroke</td>
<td>Auckland</td>
</tr>
<tr>
<td>Haemorrhagic stroke</td>
<td>Armidale</td>
</tr>
<tr>
<td>CHF</td>
<td>Gosford</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>Blue Mountains</td>
</tr>
<tr>
<td>COPD</td>
<td>Campbeltown</td>
</tr>
<tr>
<td>Hip fracture surgery</td>
<td>Grafton</td>
</tr>
</tbody>
</table>

Note: Using 90% control limits in 2009–12, eight hospitals had higher than expected mortality: Belmont (COPD), Blacktown (COPD), Bowral (AMI), Coffs Harbour (hip and ischaemic stroke), Royal Prince Alfred (ischaemic stroke), St. George (AMI), Westmead (ischaemic stroke). One hospital had lower than expected mortality: Belmont (ischaemic stroke).
Cumulative graphs provide information about an indicator over a period of time.

In this example the cumulative graph shows the way patient deaths are distributed over the 30-day period following hospitalisation.

The example shows the percentage of deaths that occurred by day, following hospitalisation.

Results for two example hospitals are shown – Queanbeyan (green line) and Parkes (red line) as well as for NSW overall (blue line).

Each death results in a step increase in the cumulative mortality line.

What is this graph telling me?

Compared with the NSW cumulative mortality profile, mortality among patients hospitalised at Parkes increased more sharply around day 10; while for patients at Queanbeyan, fewer deaths over the 30-day period are reflected in a much flatter curve.

Source: The Insights Series – Exploring clinical variation in mortality, NSW, July 2012 – June 2015
A ‘string of pearls’ graph is used to show the distribution of unit (often hospital or local health district) results and highlight differences from the NSW result.

This example shows a series of string of pearl graphs for individual hospital’s risk-standardised mortality ratio (RSMR), by peer group.

Each circle shows a hospital’s RSMR and highlights whether it is higher than expected, no different than expected or lower than expected, compared to the NSW result (shown as a blue line).

Note: String of pearls graphs can be shown vertically and horizontally.

What is this graph telling me?

Across peer groups, higher and lower than expected mortality occurred in principal referral and district hospitals. Among smaller district hospitals (peer group C2), there was one hospital with higher than expected mortality (coloured red) and two hospitals with lower than expected mortality (coloured green).

Funnel plot

Funnel plots are used to help interpret whether differences in unit (often hospital) results are significant, taking into account the number of patients seen in the hospital.

Mortality is influenced by a wide range of factors, meaning there will always be some level of variation in patient outcomes. The ‘funnel’ shape used here indicates the tolerance around this variability.

Hospitals with fewer hospitalisations (with a relatively low expected number of deaths, and appearing towards the left hand side of the plot) will display greater variability and may have a high or low ratio by chance. Fair assessment about performance should take this into account.

Hospitals above the upper 95% control limit of the funnel are considered to have higher than expected mortality ratios; those below the lower 95% limit are considered to have lower than expected RSMRs. For hospitals outside 99.8% limits, there is greater confidence about their outlier status.

What is this graph telling me?

This funnel plot shows 30-day RSMRs for each hospital in NSW. Of the 67 hospitals that admitted 50 or more AMI patients in the three year period, there were three (Queanbeyan, Kempsey, and Prince of Wales) with lower than expected mortality and five (including Parkes, Dubbo, Calvary Mater and Nepean) with higher than expected mortality.

Source: The Insights Series – Exploring clinical variation in mortality, NSW, July 2012 – June 2015
Mountain graphs show how the volume and type of outcome changes over time.

This example shows for AMI patients, the number of readmissions (or returns to acute care) by the number of days from the time patients were discharged from hospital.

The readmissions are separated (stratified) into groups according to the main reason for readmission.

These categories show whether the readmission was for:

- The same, or a condition related to the principal diagnosis (categories 1 and 2)
- For a complication or other issues related to hospital care (categories 3, 4 or 5)
- For an unrelated reason.

Understanding reasons for readmission can tell us about the role hospital care plays in potentially avoidable readmissions.

What is this graph telling me?

Readmissions occurred more frequently soon after discharge. On the third day after discharge following AMI hospitalisation there were about 300 readmissions, about 60 of these were for the same principal diagnosis (i.e. AMI) and about 115 were for a condition related to the principal diagnosis.

Source: The Insights Series – Exploring clinical variation in readmission, NSW, July 2012 – June 2015
UNDERSTANDING OUR GRAPHS

Double axis line graph

This graph explores for a particular hospital, whether changes in its risk-standardised mortality ratio (RSMR) over time is a result of changes in case mix or changes in observed mortality.

This example shows a hospital’s results for three different measures for mortality, using two axes, by five three year time periods.

Using the left axis, the graph shows:
1. How many patients died in or out of hospital within 30 days of admission (the observed rate, shown as a grey line) and
2. How many deaths were expected within 30 days of admission, given the characteristics of the hospital patients (the expected rate, shown as a dashed line).

Using the right axis, the graph shows the RSMR (shown as a coloured line).

RSMRs that are significantly different from the NSW expected mortality, for that period, are highlighted by a coloured square. Each line shows results over time for each of these three measures.

What is this graph telling me?

In this example, this hospital’s case mix has not changed substantially over the 15 year period – the dotted line showing expected mortality has trended down. The actual (observed) mortality rate has changed markedly however and the RSMR closely follows those changes in actual mortality.

For patients hospitalised with a principal diagnosis of pneumonia, the hospital had lower than expected mortality (green square) in July 00 – June 03 and higher than expected mortality (red square) in July 06 – June 09.

Battenberg graphs provide an overview of hospital level results across mortality and readmission analyses for two time periods. In this example, hospital level results are shown across nine conditions. Each Battenberg shows the significance of two measures. Across, it shows the risk-standardised mortality ratio (RSMR) and risk-standardised readmissions ratio (RSRR). Down, it shows how these measures change across the two consecutive three-year time periods (09-12 and 12-15).

Each square represents either an RSMR or RSRR. The colour of each cell shows the significance of that hospital’s result compared to the NSW result.

Overview of hospital results, UCV – An overview report

<table>
<thead>
<tr>
<th>Hospital</th>
<th>2009–2012</th>
<th>2012–2015</th>
<th>Compared to NSW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RSMR</td>
<td>RSRR</td>
<td>Higher than expected</td>
</tr>
<tr>
<td></td>
<td>Acute myocardial infarction</td>
<td>Ischaemic stroke</td>
<td>Haemorrhagic stroke</td>
</tr>
<tr>
<td>Armidale and New England Hospital</td>
<td>⬠</td>
<td>⬠</td>
<td>⬠</td>
</tr>
<tr>
<td>Auburn Hospital</td>
<td>⬠</td>
<td>⬠</td>
<td>⬠</td>
</tr>
<tr>
<td>Ballina District Hospital</td>
<td>⬠</td>
<td>⬠</td>
<td>⬠</td>
</tr>
<tr>
<td>Bankstown / Lidcombe Hospital</td>
<td>⬠</td>
<td>⬠</td>
<td>⬠</td>
</tr>
<tr>
<td>Ballarmina’s Bay District Hospital</td>
<td>⬠</td>
<td>⬠</td>
<td>⬠</td>
</tr>
<tr>
<td>Bathurst Base Hospital</td>
<td>⬠</td>
<td>⬠</td>
<td>⬠</td>
</tr>
<tr>
<td>Bellinger River District Hospital</td>
<td>⬠</td>
<td>⬠</td>
<td>⬠</td>
</tr>
<tr>
<td>Belmont Hospital</td>
<td>⬠</td>
<td>⬠</td>
<td>⬠</td>
</tr>
<tr>
<td>Blacktown Hospital</td>
<td>⬠</td>
<td>⬠</td>
<td>⬠</td>
</tr>
<tr>
<td>Blue Mountains District ANZAC Memorial Hospital</td>
<td>⬠</td>
<td>⬠</td>
<td>⬠</td>
</tr>
<tr>
<td>Biloela and District Hospital</td>
<td>⬠</td>
<td>⬠</td>
<td>⬠</td>
</tr>
<tr>
<td>Broken Hill Base Hospital</td>
<td>⬠</td>
<td>⬠</td>
<td>⬠</td>
</tr>
<tr>
<td>Cabarlah Base Hospital</td>
<td>⬠</td>
<td>⬠</td>
<td>⬠</td>
</tr>
<tr>
<td>Callinan Memorial Newcastle</td>
<td>⬠</td>
<td>⬠</td>
<td>⬠</td>
</tr>
<tr>
<td>Camden Hospital</td>
<td>⬠</td>
<td>⬠</td>
<td>⬠</td>
</tr>
<tr>
<td>Campbelltown Hospital</td>
<td>⬠</td>
<td>⬠</td>
<td>⬠</td>
</tr>
<tr>
<td>Canterbury Hospital</td>
<td>⬠</td>
<td>⬠</td>
<td>⬠</td>
</tr>
</tbody>
</table>

What is this graph telling me?

The overwhelming majority of hospital results were no different than expected (coloured grey), given their patient case mix.

For the mortality analyses*, there were 398 individual hospital results, and of those 45 were higher than expected (coloured red) and 20 were lower than expected (coloured green).

For the readmission analyses*, there were 435 individual hospital results, and of those 31 were higher than expected and 27 were lower than expected.

* Not all hospitals are shown in this example. Please refer to the original graph for details.

Source: The Insights Series – Exploring clinical variation in mortality and readmission, An overview, July 2012 – June 2015
Trend graphs show changes in a measure over time.

This example looks at the number of patients who visited an emergency department (ED) by three month periods (quarters).

The results are split (stratified) into four groups, by mode of separation. The mode of separation is a way of describing where patients went after they left an ED.

The graph shows how many patients:

- Were treated in ED and discharged home
- Were treated in the ED and then admitted to hospital
- Left the ED without receiving treatment or before completing treatment
- Were transferred to another hospital.

Each coloured line shows changes over time in the number of patients in each of these four groups.

Because patterns of patient visits to an ED are affected by seasons (for example, there are more visits in the winter) and holiday periods, it makes sense to compare the same ‘quarter’ each year.

What is this graph telling me?

Among ED patients, most patients were treated and discharged.

In the October-December quarter of 2010, there were 332,169 visits for which patients were treated and discharged. This number increased to 424,314 in the same quarter in 2015.

Source: Hospital Quarterly, Activity and performance in NSW public hospitals, October to December 2015
UNDERSTANDING OUR GRAPHS

Scatter plot

Scatter plot show results for units (often hospitals) with regards to two different measures

In this example, hospital results are shown for the percentage of patients who left the ED in four hours or less; and for the extent of change in that percentage since the same quarter, in the previous year.

Each shape represents a hospital and different shapes are used to denote peer groups. The dark blue horizontal line represents the NSW result overall for the quarter and the pale blue vertical line represents no change since last quarter.

For hospitals shown above the blue NSW line, a higher percentage of patients spent four hours or less in the ED, compared with the overall NSW result. For hospitals below this line, a lower percentage of patients spent four hours or less in the ED, compared with the overall NSW result. Hospitals shown to the left of the vertical ‘0’ line had lower results, compared with the same quarter last year, while those shown to the right of the vertical line had higher results.

What is this graph telling me?

Hospitals that are shown in the top right quadrant (or quarter) of the graph had relatively high percentage of their patients who spent four hours or less in the ED and improved on their own result in the same quarter in the previous year.

Hospitals that are shown in the bottom left quadrant of the graph had a relatively low percentage of their patients who spent four hours or less in the ED and are performing worse than in the previous year.

Source: Hospital Quarterly, Activity and performance in NSW public hospitals, October to December 2015
Dot plot graphs show the distribution of results for units (often hospital) and highlight differences from the NSW result.

This example shows a series of dot plots for responses to three patient survey questions, by hospital.

Each plot shows the number of hospitals, by the percentage of their patients who gave the response 'shown in inverted commas' (usually this is the most positive response option – or top category).

Each circle shows a hospital's result and highlights whether it is significantly different from the NSW result.

What is this graph telling me?

When patients were asked whether staff took their family or home situation into account when planning their discharge, 58% of NSW patients said yes, 'completely'. This percentage ranged across hospitals from 39% to 88%.

There were four hospitals with results significantly lower than NSW (coloured red); and four hospitals with results significantly higher than NSW (coloured green).

Source: Patient Perspectives: Exploring aspects of integration for hospital patients, Volume 2, May 2015
BHI uses this style of graph to show how many and how often patients visit an emergency department (ED), hospital or other healthcare facility.

This example shows the frequency of ED visits among NSW people (how often patients visited in a year).

The first bar shows the population of NSW for the year 2014–15, broken down into four categories; those who never visited an ED during that year, those who visited the ED once, twice, or more than three times.

The second bar shows the proportion of all ED visits made by patients in these four categories.

There is an increasing number of patients with multiple diseases (or comorbidities) that require frequent or intensive use of healthcare. Comorbidities are important to measure and understand – both for risk adjustment of outcomes such as mortality and to guide assessment of coordination and continuity of care.

What is this graph telling me?

A small percentage of the population accounted for a high level of ED use. During the year, 200,015 people visited an emergency department three or more times and accounted for 854,326 (35%) of all ED visits in NSW.

Source: Annual Performance Report: Healthcare in Focus 2015
Circuit graphs are used to compare the gap between two measures or time points.

This example shows the percentage of Gross Domestic Product (GDP) or Gross State Product (GSP) spent on healthcare (public and private) in NSW and different comparator countries. The ‘circuit line’ represents the gap between results for 2003 and 2014. The bar underneath the graph shows the percentage point difference between the two time points.

What is this graph telling me?

The proportion of GSP in NSW spent on healthcare (public and private) increased between 2003 and 2013 from 8.1% to 9.4%.

Countries such as the United Kingdom and Canada, had similar increases.

Source: Annual Performance Report: Healthcare in Focus 2015