Summary Dashboard

Ballina District Hospital

30-day mortality following hospitalisation for seven conditions

The risk-standardised mortality ratio (RSMR) is an indicator that describes, for each hospital’s patient cohort, the ‘observed’ number of deaths divided by the ‘expected’ number of deaths\(^1\). The ‘expected’ number of deaths takes account of the hospital’s case mix and is estimated using a statistical model built using the NSW patient population characteristics and outcomes. A ratio of less than 1.0 indicates lower than expected mortality while a ratio greater than 1.0 indicates higher than expected mortality. Small deviations from 1.0 are not considered to be meaningful.

Funnel plots with 95% and 99.8% control limits around the NSW rate are used to identify outlier hospitals – those with ‘special cause’ variation that may warrant further investigation.

The measure is not designed to enable direct comparisons between hospitals. It assesses each hospital’s results given its particular case mix. RSMRs do not distinguish deaths that are avoidable from those that are a reflection of the natural course of illness.

Risk-standardised mortality ratios (RSMRs) for seven conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Number of patients (index cases)</th>
<th>RSMR</th>
<th>July 2012 – June 2015</th>
<th>RSMRs for three-year periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute myocardial infarction</td>
<td>105</td>
<td>1.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ischaemic stroke</td>
<td></td>
<td>< 50 index hospitalisations, results not shown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haemorrhagic stroke</td>
<td></td>
<td>< 50 index hospitalisations, results not shown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>140</td>
<td>1.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumonia</td>
<td>178</td>
<td>1.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease</td>
<td>188</td>
<td>0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hip fracture surgery</td>
<td></td>
<td>< 50 index hospitalisations, results not shown</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mortality this period:
- Lower than expected
- No different than expected
- Higher than expected
- 95% control limits
- Statistically significant result
- Intermediate result
- No significant difference
- < 50 cases

RSMRs for three-year periods, seven clinical conditions

![RSMR chart]

Performance Profile: Ballina District Hospital
How to interpret the dashboard

If a hospital’s RSMR lies on the grey bar, its mortality is within the range of values expected for an in control NSW hospital of similar size.

Mortality is lower than expected

Mortality is higher than expected

The length of the bar for each condition reflects the tolerance for variation. It is wider for hospitals admitting a small number of patients.

How to interpret a funnel plot

Hospital within the range of values expected for an in control NSW hospital (inside the funnel)

Hospital with higher mortality

Hospital with lower mortality

Greater tolerance for variation for hospitals with fewer expected deaths

Reflects patient volume and case mix at the hospital

Risk-standardised mortality ratio (RSMR)

Expected number of deaths within 30 days

This hospital
Peer hospitals
Other hospitals

95% limits
99.8% limits

Higher than expected:
No different than expected:
Lower than expected:
Ballina District Hospital

30-day mortality following hospitalisation for acute myocardial infarction, July 2012 – June 2015

<table>
<thead>
<tr>
<th>Metric</th>
<th>This hospital</th>
<th>NSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total acute myocardial infarction hospitalisations</td>
<td>150</td>
<td>38,352</td>
</tr>
<tr>
<td>Acute myocardial infarction patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presenting patients (index cases)1</td>
<td>105</td>
<td>30,488</td>
</tr>
<tr>
<td>Patients transferred to another hospital within 30 days</td>
<td>86</td>
<td>14,797</td>
</tr>
<tr>
<td>Percentage of patients aged 65+ years*</td>
<td>71.4%</td>
<td>62.3%</td>
</tr>
<tr>
<td>Percentage of patients aged 75+ years*</td>
<td>44.8%</td>
<td>38.7%</td>
</tr>
</tbody>
</table>

Significant patient factors and comorbidities, this hospital, index cases3

*Age was a significant factor in the final model of 30-day mortality following hospitalisation for acute myocardial infarction.
Ballina District Hospital

30-day mortality following hospitalisation for acute myocardial infarction, July 2012 – June 2015

<table>
<thead>
<tr>
<th>Mortality (all causes) among 105 acute myocardial infarction index cases</th>
<th>This hospital</th>
<th>NSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentages: index cases who died within 30 days of hospitalisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Where deaths occurred:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage in this hospital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage in another hospital following transfer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage after discharge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>When deaths occurred:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage on day of admission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage within seven days</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<10 deaths
Detailed results not shown

Cumulative mortality following hospitalisation for acute myocardial infarction, this hospital and NSW

<10 deaths
Detailed results not shown
Ballina District Hospital

30-day mortality following hospitalisation for acute myocardial infarction, July 2012 – June 2015

Acute myocardial infarction risk-standardised mortality ratio by number of expected deaths, NSW public hospitals

Illustrating the effect of standardisation, July 2012 – June 2015

In order to make fair comparisons, a number of risk adjustments are made to mortality data. These take into account patient factors that influence the likelihood of dying. The table below illustrates the effect of statistical adjustments on this hospital’s results.

<table>
<thead>
<tr>
<th></th>
<th>Unadjusted ratio</th>
<th>Age and sex standardised ratio</th>
<th>Risk-standardised mortality ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio:</td>
<td>Lower than expected</td>
<td>No different than expected</td>
<td>Higher than expected</td>
</tr>
<tr>
<td>Ballina District Hospital</td>
<td>1.24</td>
<td>1.18</td>
<td>1.41</td>
</tr>
</tbody>
</table>

The extent to which comorbidities are coded in the patient record may affect risk adjustment. Therefore the ‘depth of coding’ has been assessed across NSW hospitals. In July 2009 – June 2012, the average depth of coding was 1.2 diagnoses in this hospital and 4.3 in NSW; and in July 2012 – June 2015, there were 1.3 diagnoses in this hospital and 4.8 in NSW.

Three-yearly RSMR and annual unadjusted mortality rates

The RSMR is calculated on the basis of three years of data. It takes account of differences in patient characteristics so that assessments of hospital performance are fair. To give an indication of results within the three-year period, the figure below shows the RSMR result for July 2012 – June 2015 alongside differences between this hospital and the NSW result for annual unadjusted mortality rates.

RSMR: ○ Lower than expected ○ No different than expected ○ Higher than expected

RSMR July 2012 – June 2015

Unadjusted mortality rate percentage point difference from NSW result

July 12 – June 13: 0.4
July 13 – June 14: 5.6
July 14 – June 15: 0.5
Ballina District Hospital

30-day mortality following hospitalisation for acute myocardial infarction, July 2012 – June 2015

Acute myocardial infarction, this hospital’s risk-standardised mortality ratio, expected mortality rates and observed (unadjusted) mortality rates, July 2000 – June 2015

Notes
1. Data refer to patients who were discharged between July 2012 and June 2015 who were initially admitted to this hospital (regardless of whether they were subsequently transferred) in their last period of care, for an acute and emergency hospitalisation with AMI as principal diagnosis (ICD-10-AM codes I21, excluding I21.9). Deaths are from any cause, in or out of hospital within 30 days of the hospitalisation admission date.

2. Age at admission date.

3. Comorbidities as recorded on patient record, with one year look back from the admission date of the index case. Many are a result of end-organ damage resulting from comorbidities, such as diabetes. The Australian Commission on Safety and Quality in Healthcare comorbidity list was used for acute myocardial infarction, ischaemic stroke, haemorrhagic stroke, pneumonia and hip fracture surgery. The Elixhauser comorbidity list was used for congestive heart failure and chronic obstructive pulmonary disease. STEMI refers to ST-elevation myocardial infarction. Only those conditions that were shown to have a significant impact on mortality (P<0.05) are shown.

4. Cumulative percentage of deaths over the 30 days following admission to hospital for the relevant condition.

5. Results for hospitals with expected deaths <1 are not shown. Peer hospitals are identified according to the NSW Ministry of Health’s peer grouping as of April 2012.

6. The depth of coding has been defined as the average number of secondary diagnosis coded for the index cases. The one year look back method which is used for risk adjustment, to some extent accounts for possible lower depth of coding in some hospitals.

Details of analyses are available in Spotlight on Measurement: Measuring 30-day mortality following hospitalisation, 2nd edition.

Data source: SAPHaRI, Centre for Epidemiology and Evidence, NSW Ministry of Health.
Ballina District Hospital

30-day mortality following hospitalisation for ischaemic stroke, July 2012 – June 2015

<50 index hospitalisations, results not shown
Ballina District Hospital

30-day mortality following hospitalisation for haemorrhagic stroke, July 2012 – June 2015

<50 index hospitalisations, results not shown
Ballina District Hospital

30-day mortality following hospitalisation for congestive heart failure, July 2012 – June 2015

<table>
<thead>
<tr>
<th>Category</th>
<th>This hospital</th>
<th>NSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total congestive heart failure hospitalisations</td>
<td>183</td>
<td>40,670</td>
</tr>
<tr>
<td>Congestive heart failure patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presenting patients (index cases)</td>
<td>140</td>
<td>27,484</td>
</tr>
<tr>
<td>Patients transferred to another hospital within 30 days</td>
<td>38</td>
<td>4,200</td>
</tr>
<tr>
<td>Percentage of patients aged 65+ years*</td>
<td>92.1%</td>
<td>90.2%</td>
</tr>
<tr>
<td>Percentage of patients aged 75+ years*</td>
<td>81.4%</td>
<td>73.0%</td>
</tr>
</tbody>
</table>

Significant patient factors and comorbidities, this hospital, index cases*

<table>
<thead>
<tr>
<th>Factor</th>
<th>% difference from NSW (index cases with factor recorded)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic pulmonary disease</td>
<td></td>
</tr>
<tr>
<td>Lymphoma</td>
<td></td>
</tr>
<tr>
<td>Paralysis</td>
<td>-0.6</td>
</tr>
<tr>
<td>Female</td>
<td>-0.8</td>
</tr>
<tr>
<td>Metastatic cancer</td>
<td>-1.0</td>
</tr>
<tr>
<td>Peripheral vascular disorder</td>
<td>-1.0</td>
</tr>
<tr>
<td>Three or more previous acute related admissions</td>
<td>-1.3</td>
</tr>
<tr>
<td>Liver disease</td>
<td>-1.8</td>
</tr>
<tr>
<td>Deficiency anaemia</td>
<td>-2.4</td>
</tr>
<tr>
<td>Other neurological disorders</td>
<td>-2.9</td>
</tr>
<tr>
<td>Coagulopathy</td>
<td>-5.5</td>
</tr>
<tr>
<td>Weight loss</td>
<td>-5.6</td>
</tr>
<tr>
<td>Valvular disease</td>
<td>-7.3</td>
</tr>
<tr>
<td>Pulmonary circulation disorders</td>
<td>-7.3</td>
</tr>
<tr>
<td>Renal failure</td>
<td>-8.1</td>
</tr>
<tr>
<td>Diabetes, complicated</td>
<td>-12.4</td>
</tr>
<tr>
<td>Hypertension</td>
<td>-18.7</td>
</tr>
<tr>
<td>Fluid and electrolyte disorders</td>
<td>-23.3</td>
</tr>
</tbody>
</table>

*Age was a significant factor in the final model of 30-day mortality following hospitalisation for congestive heart failure.
Ballina District Hospital

30-day mortality following hospitalisation for congestive heart failure, July 2012 – June 2015

<table>
<thead>
<tr>
<th>Mortality (all causes) among 140 congestive heart failure index cases</th>
<th>This hospital</th>
<th>NSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 (19.3%)</td>
<td>3,793 (13.8%)</td>
<td></td>
</tr>
</tbody>
</table>

Percentages: index cases who died within 30 days of hospitalisation

Where deaths occurred:

<table>
<thead>
<tr>
<th>Percentage in this hospital</th>
<th>63.0%</th>
<th>57.2%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage in another hospital following transfer</td>
<td>3.7%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Percentage after discharge</td>
<td>33.3%</td>
<td>41.3%</td>
</tr>
</tbody>
</table>

When deaths occurred:

| Percentage on day of admission | 0.0% | 5.5% |
| Percentage within seven days | 59.3% | 43.9% |

Cumulative mortality following hospitalisation for congestive heart failure, this hospital and NSW

<table>
<thead>
<tr>
<th>Days since hospitalisation</th>
<th>This hospital</th>
<th>NSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This hospital

<table>
<thead>
<tr>
<th>Cumulative number of deaths</th>
<th>Day 1</th>
<th>Day 7</th>
<th>Day 14</th>
<th>Day 21</th>
<th>Day 30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>16</td>
<td>23</td>
<td>26</td>
<td>27</td>
</tr>
</tbody>
</table>

Patients still alive

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 7</th>
<th>Day 14</th>
<th>Day 21</th>
<th>Day 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>137</td>
<td>124</td>
<td>117</td>
<td>114</td>
<td>113</td>
</tr>
</tbody>
</table>

Performance Profile: Ballina District Hospital
Ballina District Hospital

30-day mortality following hospitalisation for congestive heart failure, July 2012 – June 2015

Congestive heart failure risk-standardised mortality ratio by number of expected deaths, NSW public hospitals

Illustrating the effect of standardisation, July 2012 – June 2015

In order to make fair comparisons, a number of risk adjustments are made to mortality data. These take into account patient factors that influence the likelihood of dying. The table below illustrates the effect of statistical adjustments on this hospital’s results.

<table>
<thead>
<tr>
<th>Unadjusted ratio</th>
<th>Age and sex standardised ratio</th>
<th>Risk-standardised mortality ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.40</td>
<td>1.25</td>
<td>1.41</td>
</tr>
</tbody>
</table>

Ratio: Lower than expected | No different than expected | Higher than expected

The extent to which comorbidities are coded in the patient record may affect risk adjustment. Therefore the ‘depth of coding’ has been assessed across NSW hospitals. In July 2009 – June 2012, the average depth of coding was 1.6 diagnoses in this hospital and 5.1 in NSW; and in July 2012 – June 2015, there were 2.5 diagnoses in this hospital and 6.0 in NSW.

Three-yearly RSMR and annual unadjusted mortality rates

The RSMR is calculated on the basis of three years of data. It takes account of differences in patient characteristics so that assessments of hospital performance are fair. To give an indication of results within the three-year period, the figure below shows the RSMR result for July 2012 – June 2015 alongside differences between this hospital and the NSW result for annual unadjusted mortality rates.

RSMR: Lower than expected | No different than expected | Higher than expected

Unadjusted mortality rate percentage point difference from NSW result

<table>
<thead>
<tr>
<th>July 12 – June 13</th>
<th>July 13 – June 14</th>
<th>July 14 – June 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>6.3</td>
<td>-0.6</td>
</tr>
</tbody>
</table>
Ballina District Hospital

30-day mortality following hospitalisation for congestive heart failure, July 2012 – June 2015

Congestive heart failure, this hospital’s risk-standardised mortality ratio, expected mortality rates and observed (unadjusted) mortality rates, July 2000 – June 2015

1. Data refer to patients who were discharged between July 2012 and June 2015 who were initially admitted to this hospital (regardless of whether they were subsequently transferred) in their last period of care, for an acute and emergency hospitalisation with congestive heart failure as principal diagnosis (ICD-10-AM codes I11.0, I13.0, I13.2, I50.0, I50.1, I50.9). Deaths are from any cause, in or out of hospital within 30 days of the hospitalisation admission date.

2. Age at admission date.

3. Comorbidities as recorded on patient record, with one year look back from the admission date of the index case. Many are a result of end-organ damage resulting from comorbidities, such as diabetes. The Australian Commission on Safety and Quality in Healthcare comorbidity list was used for acute myocardial infarction, ischaemic stroke, haemorrhagic stroke, pneumonia and hip fracture surgery. The Elixhauser comorbidity list was used for congestive heart failure and chronic obstructive pulmonary disease. STEMI refers to ST-elevation myocardial infarction. Only those conditions that were shown to have a significant impact on mortality (P<0.05) are shown.

4. Cumulative percentage of deaths over the 30 days following admission to hospital for the relevant condition.

5. Results for hospitals with expected deaths <1 are not shown. Peer hospitals are identified according to the NSW Ministry of Health’s peer grouping as of April 2012.

6. The depth of coding has been defined as the average number of secondary diagnosis coded for the index cases. The one year look back method which is used for risk adjustment, to some extent accounts for possible lower depth of coding in some hospitals.

Details of analyses are available in Spotlight on Measurement: Measuring 30-day mortality following hospitalisation, 2nd edition.

Data source: SAPHaRI, Centre for Epidemiology and Evidence, NSW Ministry of Health.
Ballina District Hospital

30-day mortality following hospitalisation for pneumonia, July 2012 – June 2015

<table>
<thead>
<tr>
<th></th>
<th>This hospital</th>
<th>NSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total pneumonia hospitalisations</td>
<td>191</td>
<td>54,478</td>
</tr>
<tr>
<td>Pneumonia patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presenting patients (index cases)¹</td>
<td>178</td>
<td>47,133</td>
</tr>
<tr>
<td>Patients transferred to another hospital within 30 days</td>
<td>38</td>
<td>6,564</td>
</tr>
<tr>
<td>Percentage of patients aged 65+ years*²</td>
<td>66.3%</td>
<td>69.1%</td>
</tr>
<tr>
<td>Percentage of patients aged 75+ years*²</td>
<td>49.4%</td>
<td>50.0%</td>
</tr>
</tbody>
</table>

significant patient factors and comorbidities, this hospital, index cases³

*Age was a significant factor in the final model of 30-day mortality following hospitalisation for pneumonia.
Ballina District Hospital

30-day mortality following hospitalisation for pneumonia, July 2012 – June 2015

<table>
<thead>
<tr>
<th>Mortality (all causes) among 178 pneumonia index cases</th>
<th>This hospital</th>
<th>NSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 (10.7%)</td>
<td>5,037 (10.7%)</td>
<td></td>
</tr>
</tbody>
</table>

Percentages: index cases who died within 30 days of hospitalisation

<table>
<thead>
<tr>
<th>Where deaths occurred:</th>
<th>This hospital</th>
<th>NSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage in this hospital</td>
<td>73.7%</td>
<td>60.3%</td>
</tr>
<tr>
<td>Percentage in another hospital following transfer</td>
<td>0.0%</td>
<td>1.4%</td>
</tr>
<tr>
<td>Percentage after discharge</td>
<td>26.3%</td>
<td>38.3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>When deaths occurred:</th>
<th>This hospital</th>
<th>NSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage on day of admission</td>
<td>0.0%</td>
<td>6.0%</td>
</tr>
<tr>
<td>Percentage within seven days</td>
<td>47.4%</td>
<td>51.8%</td>
</tr>
</tbody>
</table>

Cumulative mortality following hospitalisation for pneumonia, this hospital and NSW

<table>
<thead>
<tr>
<th>Days since hospitalisation</th>
<th>This hospital</th>
<th>NSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>1</td>
<td>0.3%</td>
</tr>
<tr>
<td>Day 7</td>
<td>9</td>
<td>2.5%</td>
</tr>
<tr>
<td>Day 14</td>
<td>15</td>
<td>2.5%</td>
</tr>
<tr>
<td>Day 21</td>
<td>18</td>
<td>3.5%</td>
</tr>
<tr>
<td>Day 30</td>
<td>19</td>
<td>3.5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>This hospital</th>
<th>Cumulative number of deaths</th>
<th>Patients still alive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>1</td>
<td>177</td>
</tr>
<tr>
<td>Day 7</td>
<td>9</td>
<td>169</td>
</tr>
<tr>
<td>Day 14</td>
<td>15</td>
<td>163</td>
</tr>
<tr>
<td>Day 21</td>
<td>18</td>
<td>160</td>
</tr>
<tr>
<td>Day 30</td>
<td>19</td>
<td>159</td>
</tr>
</tbody>
</table>
Pneumonia

Ballina District Hospital

30-day mortality following hospitalisation for pneumonia, July 2012 – June 2015

Pneumonia risk-standardised mortality ratio by number of expected deaths, NSW public hospitals⁵

Illustrating the effect of standardisation, July 2012 – June 2015

In order to make fair comparisons, a number of risk adjustments are made to mortality data. These take into account patient factors that influence the likelihood of dying. The table below illustrates the effect of statistical adjustments on this hospital’s results.

<table>
<thead>
<tr>
<th>Unadjusted ratio</th>
<th>Age and sex standardised ratio</th>
<th>Risk-standardised mortality ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.07</td>
<td>1.24</td>
</tr>
</tbody>
</table>

The extent to which comorbidities are coded in the patient record may affect risk adjustment. Therefore the ‘depth of coding’⁶ has been assessed across NSW hospitals. In July 2009 – June 2012, the average depth of coding was 1.4 diagnoses in this hospital and 3.8 in NSW; and in July 2012 – June 2015, there were 1.9 diagnoses in this hospital and 4.8 in NSW.

Three-yearly RSMR and annual unadjusted mortality rates

The RSMR is calculated on the basis of three years of data. It takes account of differences in patient characteristics so that assessments of hospital performance are fair. To give an indication of results within the three-year period, the figure below shows the RSMR result for July 2012 – June 2015 alongside differences between this hospital and the NSW result for annual unadjusted mortality rates.

RSMR: ○ Lower than expected ○ No different than expected ○ Higher than expected

Unadjusted mortality rate percentage point difference from NSW result

0.0 1.5

Higher than expected

Lower than expected

No different than expected

95% limits

99.8% limits

This hospital

Peer hospitals

Other hospitals

Risk - standardised mortality ratio (RSMR)

Expected number of deaths within 30 days

Pneumonia risk-standardised mortality ratio by number of expected deaths, NSW public hospitals⁵

Performance Profile: Ballina District Hospital
Ballina District Hospital

30-day mortality following hospitalisation for pneumonia,
July 2012 – June 2015

Pneumonia, this hospital’s risk-standardised mortality ratio, expected mortality rates and observed (unadjusted) mortality rates, July 2000 – June 2015

Notes
1. Data refer to patients who were discharged between July 2012 and June 2015 who were initially admitted to this hospital (regardless of whether they were subsequently transferred) in their last period of care, for an acute and emergency hospitalisation with pneumonia as principal diagnosis (ICD-10-AM codes J13, J14, J15, J16, J18). Deaths are from any cause, in or out of hospital within 30 days of the hospitalisation admission date.
2. Age at admission date.
3. Comorbidities as recorded on patient record, with one year look back from the admission date of the index case. Many are a result of end-organ damage resulting from comorbidities, such as diabetes. The Australian Commission on Safety and Quality in Healthcare comorbidity list was used for acute myocardial infarction, ischaemic stroke, haemorrhagic stroke, pneumonia and hip fracture surgery. The Elixhauser comorbidity list was used for congestive heart failure and chronic obstructive pulmonary disease. STEMI refers to ST-elevation myocardial infarction. Only those conditions that were shown to have a significant impact on mortality (P<0.05) are shown.
4. Cumulative percentage of deaths over the 30 days following admission to hospital for the relevant condition.
5. Results for hospitals with expected deaths <1 are not shown. Peer hospitals are identified according to the NSW Ministry of Health’s peer grouping as of April 2012.
6. The depth of coding has been defined as the average number of secondary diagnosis coded for the index cases. The one year look back method which is used for risk adjustment, to some extent accounts for possible lower depth of coding in some hospitals.

Details of analyses are available in Spotlight on Measurement: Measuring 30-day mortality following hospitalisation, 2nd edition.

Data source: SAPHaRI, Centre for Epidemiology and Evidence, NSW Ministry of Health.
Ballina District Hospital

30-day mortality following hospitalisation for chronic obstructive pulmonary disease, July 2012 – June 2015

<table>
<thead>
<tr>
<th></th>
<th>This hospital</th>
<th>NSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total chronic obstructive pulmonary disease hospitalisations</td>
<td>360</td>
<td>58,675</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease patients</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Presenting patients (index cases)
| | 188 | 30,525 |
| Patients transferred to another hospital within 30 days | 30 | 3,337 |
| Percentage of patients aged 65+ years* | 79.8% | 79.5% |
| Percentage of patients aged 75+ years* | 52.7% | 50.7% |

Significant patient factors and comorbidities, this hospital, index cases

<table>
<thead>
<tr>
<th>Factor</th>
<th>% difference from NSW (index cases with factor recorded)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>7.3</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>0.5</td>
</tr>
<tr>
<td>Psychoses</td>
<td>-0.3</td>
</tr>
<tr>
<td>Liver disease</td>
<td>-1.1</td>
</tr>
<tr>
<td>Solid tumour without metastasis</td>
<td>-1.3</td>
</tr>
<tr>
<td>Metastatic cancer</td>
<td>-1.5</td>
</tr>
<tr>
<td>Other neurological disorders</td>
<td>-1.7</td>
</tr>
<tr>
<td>Three or more previous acute related admissions</td>
<td>-1.9</td>
</tr>
<tr>
<td>Pulmonary circulation disorders</td>
<td>-4.5</td>
</tr>
<tr>
<td>Cardiac arrhythmia</td>
<td>-7.7</td>
</tr>
<tr>
<td>Diabetes, complicated</td>
<td>-8.8</td>
</tr>
<tr>
<td>Weight loss</td>
<td>-9.5</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>-10.0</td>
</tr>
<tr>
<td>Fluid and electrolyte disorders</td>
<td>-18.3</td>
</tr>
</tbody>
</table>

Age was a significant factor in the final model of 30-day mortality following hospitalisation for chronic obstructive pulmonary disease.
Ballina District Hospital

30-day mortality following hospitalisation for chronic obstructive pulmonary disease, July 2012 – June 2015

Mortality (all causes) among 188 chronic obstructive pulmonary disease index cases

<table>
<thead>
<tr>
<th></th>
<th>This hospital</th>
<th>NSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentages: index cases who died within 30 days of hospitalisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Where deaths occurred:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage in this hospital</td>
<td>50.0%</td>
<td>55.8%</td>
</tr>
<tr>
<td>Percentage in another hospital following transfer</td>
<td>14.3%</td>
<td>1.4%</td>
</tr>
<tr>
<td>Percentage after discharge</td>
<td>35.7%</td>
<td>42.8%</td>
</tr>
<tr>
<td>When deaths occurred:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage on day of admission</td>
<td>0.0%</td>
<td>5.1%</td>
</tr>
<tr>
<td>Percentage within seven days</td>
<td>57.1%</td>
<td>47.1%</td>
</tr>
</tbody>
</table>

Cumulative mortality following hospitalisation for chronic obstructive pulmonary disease, this hospital and NSW

<table>
<thead>
<tr>
<th>Days since hospitalisation</th>
<th>This hospital</th>
<th>NSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>21</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ballina District Hospital

30-day mortality following hospitalisation for chronic obstructive pulmonary disease, July 2012 – June 2015

Chronic obstructive pulmonary disease risk-standardised mortality ratio by number of expected deaths, NSW public hospitals

Illustrating the effect of standardisation, July 2012 – June 2015

In order to make fair comparisons, a number of risk adjustments are made to mortality data. These take into account patient factors that influence the likelihood of dying. The table below illustrates the effect of statistical adjustments on this hospital’s results.

<table>
<thead>
<tr>
<th>Unadjusted ratio</th>
<th>Age and sex standardised ratio</th>
<th>Risk-standardised mortality ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.72</td>
<td>0.74</td>
<td>0.99</td>
</tr>
</tbody>
</table>

The extent to which comorbidities are coded in the patient record may affect risk adjustment. Therefore the ‘depth of coding’ has been assessed across NSW hospitals. In July 2009 – June 2012, the average depth of coding was 1.0 diagnoses in this hospital and 3.6 in NSW; and in July 2012 – June 2015, there were 1.5 diagnoses in this hospital and 4.3 in NSW.

Three-yearly RSMR and annual unadjusted mortality rates

The RSMR is calculated on the basis of three years of data. It takes account of differences in patient characteristics so that assessments of hospital performance are fair. To give an indication of results within the three-year period, the figure below shows the RSMR result for July 2012 – June 2015 alongside differences between this hospital and the NSW result for annual unadjusted mortality rates.

- Lower than expected
- No different than expected
- Higher than expected

RSMR: July 2012 – June 2015

<table>
<thead>
<tr>
<th>Unadjusted mortality rate percentage point difference from NSW result</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 12 – June 13</td>
</tr>
<tr>
<td>-6.6</td>
</tr>
</tbody>
</table>

Ballina District Hospital

30-day mortality following hospitalisation for chronic obstructive pulmonary disease, July 2012 – June 2015

Chronic obstructive pulmonary disease, this hospital’s risk-standardised mortality ratio, expected mortality rates and observed (unadjusted) mortality rates, July 2000 – June 2015

Notes
1. Data refer to patients who were discharged between July 2012 and June 2015 who were initially admitted to this hospital (regardless of whether they were subsequently transferred) in their last period of care, for an acute and emergency hospitalisation with COPD as principal diagnosis (ICD-10-AM code J41, J42, J43, J44, J47, and J20 and J40 if accompanied by J41, J42, J43, J44 and J47 in any secondary diagnoses). Deaths are from any cause, in or out of hospital within 30 days of the hospitalisation admission date.

2. Age at admission date.

3. Comorbidities as recorded on patient record, with one year look back from the admission date of the index case. Many are a result of end-organ damage resulting from comorbidities, such as diabetes. The Australian Commission on Safety and Quality in Healthcare comorbidity list was used for acute myocardial infarction, ischaemic stroke, haemorrhagic stroke, pneumonia and hip fracture surgery. The Elixhauser comorbidity list was used for congestive heart failure and chronic obstructive pulmonary disease. STEMI refers to ST-elevation myocardial infarction. Only those conditions that were shown to have a significant impact on mortality (P<0.05) are shown.

4. Cumulative percentage of deaths over the 30 days following admission to hospital for the relevant condition.

5. Results for hospitals with expected deaths <1 are not shown. Peer hospitals are identified according to the NSW Ministry of Health’s peer grouping as of April 2012.

6. The depth of coding has been defined as the average number of secondary diagnosis coded for the index cases. The one year look back method which is used for risk adjustment, to some extent accounts for possible lower depth of coding in some hospitals.

Details of analyses are available in Spotlight on Measurement: Measuring 30-day mortality following hospitalisation, 2nd edition.

Data source: SAPHiR, Centre for Epidemiology and Evidence, NSW Ministry of Health.
Ballina District Hospital

30-day mortality following hospitalisation for hip fracture surgery, July 2012 – June 2015

<50 index hospitalisations, results not shown